Digital Signal Processing SS 2019/20

Exercise Sheet 5

Due date: 14.06.2019 (time of the lecture)

Problem 1

Derive the inverse Discrete Time Fourier Transform (DTFT) of $X(e^{j\omega}) = \cos^3 \omega$. Hint: Use the Euler formula to replace the cosine term by exponentials and then apply the inverse DTFT.

Problem 2

Assume, $X(e^{j\omega})$ is the DTFT of x[n]. Derive the DTFT of

- a) $x^*[-n]$ (the complex conjugate of x[-n])
- b) x[2n]
- c) x[n] * x[n-2]

Problem 3

Determine analytically the DTFT of each of the following sequences. Plot the magnitude and angle of $X(e^{j\omega})$ over $0 \le \omega \le \pi$.

- a) $x(n) = 2(0.5)^n u(n+2)$
- b) $x(n) = (0.6)^{|n|} [u(n+10) u(n-11)]$

Problem 4

Using the matrix-vector multiplication approach discussed in chapter 3 of "Digital Signal Processing Using MATLAB", write a MATLAB function to compute the DTFT of a finite-duration sequence. The format of the function should be

function [X] = dtft(x, n, w)

% Computes Discrete-time Fourier Transform

% |X| = dtft(x,n,w)

 $\% X = DTFT \ values \ computed \ at \ w \ frequencies$

% x = finite duration sequence over n

% n = sample position vector

% w = frequency location vector

Use this function to compute the DTFT $X(e^{j\omega})$ of the following finite-duration sequences over $-\pi \le \omega \le \pi$. Plot DTFT magnitude and angle graphs in one figure window.

a) $x(n) = (0.6)^{|n|}[u(n+10) - u(n-11)]$. Comment on the angle plot.

- b) $x(n) = n(0.9)^n [u(n) u(n-21)].$
- c) $x(n) = [\cos(0.5\pi n) + j\sin(0.5\pi n)][u(n) u(n-51)]$. Comment on the magnitude plot.
- d) x(n) = (4, 3, 2, 1, 1, 2, 3, 4). Comment on the angle plot.
- e) x(n) = (4, 3, 2, 1, -1, -2, -3, -4). Comment on the angle plot.